Nama : Andika Pradnya S
NIM : 1614122045
Tugas MK : Teknik Tegangan Tinggi
Jenis-Jenis Generator DC
Jenis-Jenis Generator DC
Generator Berpenguatan Bebas
Generator tipe penguat bebas dan terpisahadalah generator yang lilitan medannya dapat dihubungkan ke sumber dc yang secara listrik tidak tergantung darimesin. Tegangan searah yang dipasangkan pada kumparan medan yang mempunyai tahanan Rf akan menghasilkan arus If dan menimbulkan fluks pada kedua kutub. Tegangan induksi akan dibangkitkan pada generator.
Jika generator dihubungkan dengan beban, dan Ra adalah tahanan dalam generator, maka hubungan yang dapat dinyatakan adalah:
Besaran yang mempengaruhi kerja dari generator :
• Tegangan jepit (V)
• Arus eksitasi (penguatan)
• Arus jangkar (Ia)
• Kecepatan putar (n).
Generator Penguatan Sendiri
Generator penguatan sendiri adalah arus listrik yang dialirkan melalui kumparan penguat medan Rf yang diambil dari output generator tersebut. Biasanya generator ini dibuat sedemikian rupa sehingga dapat memberikan penguatan sendiri. Sebelum dapat bekerja dengan penguatan sendiri, biasanya kutub-kutub magnet harus diberi penguat untuk mendapatkan remenensi magnet (magnet sisa) dari suatu sumber lain. Sisa magnet kecil ini membangkitkan tegangan pada jangkar yang selanjutnya dikembalikan lagi ke dalam belitan medan untuk memperkuat medan magnetnya, sehingga dengan demikian tegangan yang dibangkitkan dalam jangar akan lebih besar. Demikian seterusnya hingga didapat tegangan yang cukup.
Ditinjau dari cara-cara menghubungkan lilitan-lilitan medan dengan jangkar dan rangkaian luar atau jala-jala generator, penguatan sendiri ini dibagi menjadi:
1) Generator Shunt
Ciri utama generator shunt adalah kumparan penguat medan dipasang parallel terhadap kumparan jangkar. Untuk generator shunt berlaku hubungan:
Pada generator shunt, untuk mendapatkan penguatan sendiri diperlukan:
a. Adanya sisa magnetik pada sistem penguat.
b. Hubungan dari rangkaian medan pada jangkar harus sedemikian, hingga arah medan yang terjadi, memperkuat medan yang sudah ada.
Mesin shunt akan gagal membangkitkan tegangannya apabila:
a. Sisa magnetik tidak ada
Misal: pada mesin-mesin baru. Sehingga cara memberikan sisa magnetik adalah pada generator shunt diubah menjadi generator berpenguatan bebas atau pada generator dipasang pada sumber arus searah, dan dijalankan sebagai motor shunt dengan polaritas sikat-sikat dan perputaran nominal.
b. Hubungan medan terbalik
Karena generator diputar oleh arah yang salah dan dijalankan, sehingga arus medan tidak memperbesar nilai fluksi. Untuk memperbaikinya dengan hubungan-hubungan perlu diubah dan diberi kembali sisa magnetik, seperti cara untuk memberikan sisa magnetik.
c. Tahanan rangkaian penguat terlalu besar
Hal ini terjadi misalnya pada hubungan terbuka dalam rangkaian medan, hingga Rf tidak berhingga atau tahanan kontak sikat terlalu besar atau komutator kotor.
2) Generator Seri
Pada generator ini kumparan medan diseri dengan kumparan jangkarnya, sehingga medannya mendapat penguatan jika arus bebannya ada, itu sebabnya generator seri selalau terkopel dengan bebannya, kalau tidak demikian maka tegangan terminal tidak akan muncul. Untuk generator seri berlaku hubungan:
Kelemahan generator seri adalah tegangan output (terminal) tidak stabil, karena arus beban IL berubah-ubah sesuai dengan beban yang dipikul. Hal ini menyebabkan fluks magnet yang dihasilkan oleh kumparan medan seri tidak stabil. Keuntungan generator seri adalah daya output menjadi besar.
3) Generator Kompon
Generator kompon merupakan gabungan dari generator shunt dan generator seri, yang dilengkapi dengan kumparan shunt dan seri dengan sifat yang dimiliki merupakan gabungan dari keduanya. Generator kompon bisa dihubungkan sebagai kompon pendek atau dalam kompon panjang. Perbedaan dari kedua hubungan ini hampir tidak ada, karena tahanan kumparan seri kecil, sehingga tegangan drop pada kumparan ini ditinjau dari tegangan terminal kecil sekali dan terpengaruh. Biasanya kumparan seri dihubungkan sedemikian rupa, sehingga kumparan seri ini membantu kumparan shunt, yakni MMF-nya searah. Bila generator ini dihubungkan seperti itu, maka dikatakan generator itu mempunyai kumparan kompon bantu. Mesin yang mempunyai kumparan seri melawan medan shunt disebut kompon lawan dan ini biasanya digunakan untuk motor atau generator-generator khusus seperti untuk mesin las. Dalam hubungan kompon bantu yang mempunyai peranan utama ialah kumparan shunt dan kumparan seri dirancang untuk kompensasi MMF akibat reaksi jangkar dan juga tegangan drop di jangkar pada range beban tertentu. Ini mengakibatkan tegangan generator akan diatur secara otomatis pasa satu range beban tertentu.
(a) Kompon panjang
(b) Kompon pendek
Prinsip Kerja generator DC
Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday :
Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah :
- harus ada konduktor ( hantaran kawat )
- harus ada medan magnetik
- harus ada gerak atau perputaran dari konduktor dalam medan, atau ada fluksi yang berubah yang memotong konduktor itu.
Keterangan gambar :
- Pada gambar Generator DC Sederhana dengan sebuah penghantar kutub tersebut, dengan memutar rotor ( penghantar ) maka pada penghantar akan timbul EMF.
- Kumparan ABCD terletak dalam medan magnet sedemikian rupa sehingga sisi A-B dan C-D terletak tegak lurus pada arah fluks magnet.
- Kumparan ABCD diputar dengan kecepatan sudut yang tetap terhadap sumbu putarnya yang sejajar dengan sisi A-B dan C-D.
- GGL induksi yang terbentuk pada sisi A-B dan sisi C-D besarnya sesuai dengan perubahan fluks magnet yang dipotong kumparan ABCD tiap detik sebesar :
Untuk menentukan arah arus pada setiap saat, berlaku pada kaidah tangan kanan :
- ibu jari : gerak perputaran
- jari telunjuk : medan magnetik kutub utara dan selatan
- jari tengah : besaran galvanis tegangan U dan arus I
Untuk perolehan arus searah dari tegangan bolak-balik, meskipun tujuan utamanya adalah pembangkitan tegangan searah, tampak bahwa tegangan kecepatan yang dibangkitkan pada kumparan jangkar merupakan tegangan bolak-balik. Bentuk gelombang yang berubah-ubah tersebut karenanya harus disearahkan.
Untuk mendapatkan arus searah dari arus bolak balik dengan menggunakan metode atau sistem:
- Saklar
Saklar berfungsi untuk menghubung singkatkan ujung-ujung kumparan. Prinsip kerjanya adalah sebagai berikut :
Bila kumparan jangkar berputar, maka pada kedua ujung kumparan akan timbul tegangan yang sinusoida. Bila setengah periode tegangan positif saklar di hubungkan, maka tegangan menjadi nol. Dan bila saklar dibuka lagi akan timbul lagi tegangan. Begitu seterusnya setiap setengah periode tegangan saklar dihubungkan, maka akan dihasilkan tegangan searah gelombang penuh.
- Komutator
Komutator berfungsi sebagai saklar, yaitu untuk menghubung singkatkan kumparan jangkar. Komutator berupa cincin belah yang dipasang pada ujung kumparan jangkar.Bila kumparan jangkar berputar, maka cincin belah ikut berputar. Karena kumparan berada dalam medan magnet, akan timbul tegangan bolak balik sinusoidal. Bila kumparan telah berputar setengah putaran, sikat akan menutup celah cincin sehingga tegangan menjadi nol. Karena cincin berputar terus, maka celah akan terbuka lagi dan timbul tegangan lagi. Bila perioda tegangan sama dengan perioda perputaran cincin, tegangan yang timbul adalah tegangan arus searah gelombang penuh.
- Dioda
Dioda adalah komponen pasif yang mempunyai sifat-sifat sebagai berikut:
- Bila diberi prasikap maju (forward bias) bisa dialiri arus.
- Bila diberi prasikap balik (reverse bias) dioda tidak akan dialiri arus.
Berdasarkan bentuk gelombang yang dihasilkan, dioda dibagi dalam:
- Half Wave Rectifier (penyearah setengah gelombang)
- Full Wave Rectifier (penyearah satu gelombang penuh)
Pembangkitan Tegangan Induksi Pada Generator Berpenguatan Sendiri
Di sini akan diterangkan pembangkitan tegangan induksi generator shunt dalam keadaan tanpa beban. Pada saat mesin dihidupkan (S tutup), timbul suatu fluks residu yang memang sudah terdapat pada kutub. Dengan memutarkan rotor, akan dibangkitkan tegangan induksi yang kecil pada sikat. Akibat adanya tegangan induksi ini mengalirlah arus pada kumparan medan. Arus ini akan menimbulkan fluks yang memperkuat fluks yang telah ada sebelumnya. Proses terus berlangsung hingga dicapai tegangan yang stabil. Jika tahanan medan diperbesar, tegangan induksi yang dibangkitkan menjadi lebih kecil. Berarti semakin besar tahanan kumparan medan, semakin buruk generator tersebut.
Kerja Paralel Generator Arus Searah
Untuk memberi tenaga pada suatu beban kadang-kadang diperlukan kerja paralel dari dua atau lebih generator. Pada penggunaan beberapa buah mesin perlu dihindari terjadinya beban lebih pada salah satu mesin. Kerja paralel generator juga diperlukan untuk meningkatkan efisiensi yang besar pada perusahaan listrik umum yang senantiasa memerlukan tegangan yang konstan. Untuk hal-hal yang khusus sering dinamo dikerjakan paralel dengan aki, sehingga secara teratur dapat mengisi aki tersebut.
Tujuan kerja paralel dari generator adalah ;
Untuk membantu mengatasi beban untuk menjaga jangan sampai mesin dibebani lebih.
Jika satu mesin dihentikan akan diperbaiki karena ada kerusakan, maka harus ada mesin lain yang meneruskan pekerjaan. Jadi untuk menjamin kontinuitas dari penyediaan tenaga listrik.
Hubungan Paralel Generator
Pembagian beban antara generator-generator yang dihubungkan paralel tergantung pada tegangan sumber masing-masing generator. Jika suatu saat arus jaringnya (I1 - I2) sangat kecil, tegangan terminalnya akan hampir sama dengan tegangan sumbernya. Situasi ini menimbulkan keadaan yang sangat labil. Kalau tegangan sumber salah satu generator berubah sedikit, ada kemungkinan generator yang tegangan sumbernya lebih rendah akan bekerja sebagai motor. Mesin shunt sebagai motor maupun generator memiliki arah putar yang sama. Supaya generator ini tidak bekerja sebagai motor, biasanya digunakan saklar dengan otomat arus balik. Otomat ini memiliki sebuah kumparan tegangan dan sebuah kumparan arus. Medan kedua kumparan ini saling berlawanan. Kalau kumparan-kumparannya dipilih secara tepat, otomatnya bisa berfungsi sebagai pengaman arus maksimum maupun pengaman arus balik. Menambahkan sebuah generator pada jaringan harus dilakukan sebagai berikut:
a. Generator yang akan ditambahkan dijalankan hingga mencapai kecepatan putar nominalnya.
b. Tahanan pengatur medannya diatur sedemikian hingga tegangan generatornya menjadi sedikit lebih tinggi daripada tegangan jaring. Tegangannya dapat diperiksa dengan menggunakan saklar pilih voltmeter.
c. Generator tadi kemudian dihubungkan dengan jaringan. Karena tegangannya sedikit lebih tinggi daripada tegangan jaring, generator ini tidak akan bekerja sebagai motor.
d. Selanjutnya tahanan pengatur medannya diatur sedemikian hingga generator tersebut memikul sebagian dari beban jaring. Besar beban generator ini dapat dilihat dari penunjukan amperemeternya.
Kelebihan dan Kekurangan Generator DC
Kekurangan:
- Konstruksinya rumit Setiap segmen dihubungkan oleh kawat atau kabel, karena jumlah segmen pada komutator jumlahnya sangat banyak maka kawat atau kabel yang dibutuhkan juga banyak sehingga ini menjadi salah satu kekurangan dari komutator . Karena konstruksinya yang rumit dan membutuhkan kawat atau kabel yang banyak, generator DC menjadi mahal harganya.
- Selain itu, akibat komutator mempunyai segmen-segmen yang banyak dengan jarak yang relatif dekat, ketika komutator berputar dengan kecepatan yang tingi akan menghasilkan suara yang bising.
- Dan akibat jarak yang dekat antar tiap segmen, kapasitas tegangannya juga rendah (max 5MW) karena dikhawatirkan akan terjadi peloncatan bunga api listrik.
- Kelemahan berikutnya pada komutator adalah komutator yang sedang berputar harus dihubungkan dengan brush (yang terdiri dari material Carbon) guna untuk menyalurkan arus DC ke rotor generator. Hal ini mengakibatkan maintenance yang dilakukan harus lebih sering, karena brush akan mengalami "Aus" yang mengakibatkan adanya serpihan-serpihan karbon pada komutator.
Keunggulan:
- mempunyai Torsi awal yang besar, sehingga banyak digunakan sebagai starter motor.
Bersambung...
Tidak ada komentar:
Posting Komentar